UMass Dartmouth Precalculus Practice Exam

1. Evaluate the function at each specified value of the independent variable and simplify.

$$g(y) = 3 - 2y$$

a)
$$g(0) =$$

b)
$$g(\frac{3}{2}) =$$

c)
$$g(s+3) =$$

2. For the given $f(x) = x^2 + 3$, find f(a + 7).

$$f(a + 7) =$$

3. Which of the following represents the domain of the function $f(x) = \sqrt{9x - 14}$.

(a)
$$(\frac{14}{9}, \infty)$$
 (b) $[\frac{14}{9}, \infty)$ (c) $(\frac{9}{14}, \infty)$ (d) $[\frac{9}{14}, \infty)$

(b)
$$\left[\frac{14}{9}, \infty\right)$$

(c)
$$\left(\frac{9}{14},\infty\right)$$

(d)
$$\left[\frac{9}{14},\infty\right]$$

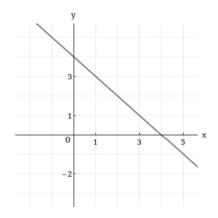
4. Find all the real solutions of the quadratic equation. (Enter your answers as a commaseparated list. Express radicals in simplest form)

$$2y^2 - 8y + 1 = 0$$
, $y =$ ____

5. Solve the question by factoring. (Enter your answers as a comma-separated list.)

$$x^7 + x^6 - 2x^5 = 0, \qquad x = \underline{\hspace{1cm}}$$

- 6. For the linear equation 5x + 2y 20 = 0, the *x*-intercept is _____, and the *y*-intercept is ______. The equation in slope intercept form is y =____. The slope of the graph of this equation is ______.
- 7. Find the equation for the line whose graph is sketched.



8. Solve the inequality. 2(x-4)+6<7-x and express the solution set in the interval notation.

(a) $(-\infty, 3)$ (b) $(3, \infty)$ (c) $(-\infty, 3]$ (d) $[-\infty, 3)$

9. Solve the absolute value equation |2x - 7| = 9. (Enter your answers as a comma-separated list. If there is no solution, enter NO SOLUTION).

 $x = \underline{\hspace{1cm}}$

10. Solve the equation for the indicated variable.

 $V = \frac{4}{3}\pi r^3$; for r. r =_____

11. Solve the equation for the indicated variable.

 $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$; for R_2 . $R_2 = \underline{\hspace{1cm}}$

12. Perform the addition or subtraction and simplify:

 $\frac{3}{r+2} + \frac{1}{r^2-4} = \underline{\hspace{1cm}}$

13. Perform the multiplication or division and simplify:

 $\frac{x^2 + 2x - 35}{x^2 - 49} \cdot \frac{x - 7}{x + 6} = \underline{\hspace{1cm}}$

14. Perform the multiplication or division and simplify:

 $\frac{\frac{x^3}{x+4}}{\frac{x}{x}} = \underline{\qquad}$

15. Simplify the complex function:

 $\frac{\frac{2}{ab^2} - \frac{2}{a^2b}}{\frac{1}{b} - \frac{1}{a}} = \underline{\qquad}$

16. Rationalize the denominator and simplify:

$$\frac{\sqrt{30}}{\sqrt{10}-3} = \underline{\hspace{1cm}}$$

17. Evaluate the expression,

(a)
$$\log_3\left(\frac{1}{81}\right) =$$
 (b) $\log_5\sqrt{5} =$

(b)
$$\log_5 \sqrt{5} =$$

(c)
$$\log_4 0.25 =$$

18. Evaluate the expressions,

(a)
$$2^{\log_2 14} =$$
 (b) $3^{\log_3 27} =$

(b)
$$3^{\log_3 27} =$$

(c)
$$e^{\ln\sqrt{3}} =$$

19. (a) Find the exact solution of the exponential equation in terms of logarithms.

$$e^{-2x} = 7$$
, $x =$ ____

(b)Use a calculator to find an approximation to the solution rounded to six decimal places.

$$x = \underline{\hspace{1cm}}$$

- 20. (a) Write the equation $6^{2x} = 25$ in logarithmic form: _____.
 - (b) Write the equation ln(A) = 5 in exponential form: _____.
- 21. (a) Find the exact solution of the exponential equation in terms of logarithms.

$$1 + e^{4x+1} = 40,$$
 $x = ____$

(b) Use a calculator to find an approximation to the solution rounded to six decimal places.

22. Use the Laws of Logarithms to evaluate the expression:

$$\log(50) + \log(200) =$$

23. Use the Laws of Logarithms to expand the logarithmic expression as much as possible.

$$\log\left(\frac{x^5y}{z}\right) = \underline{\qquad}$$

24. Use the Laws of Logarithms to combine the logarithmic expression. Write the expression as a single logarithm.

$$3\log(x) + \log(y) - \log(z) = \underline{\hspace{1cm}}$$

25. Simplify the expression and express the answer using rational exponents. Assume that u and v denote positive numbers.

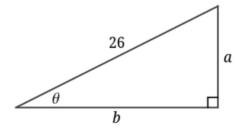
$$\sqrt{\frac{25u^3v^2}{uv^6}} = \underline{\qquad}$$

26. Find the equation of the circle that satisfies the given conditions.

Center
$$(5, -4)$$
; radius = 4

- 27. Use f(x) = 4x 3 and $g(x) = 2 x^2$ to evaluate the expression for the composite function:
 - (a) $(f \circ f)(x) =$ _____
 - (b) $(g \circ g)(x) =$ _____
- 28. Express the lengths a and b in the figure in terms of θ .

$$b = _{----}$$



29. Find the exact value of the cosine and sine of the following angle.

$$\theta = \frac{2\pi}{3}$$

$$\cos\left(\frac{2\pi}{3}\right) = \underline{\hspace{1cm}},$$

$$\sin\left(\frac{2\pi}{3}\right) = \underline{\hspace{1cm}}$$

30. Simplify the trigonometric expression.

$$\sin^3 x + \cos^2 x \sin x = \underline{\hspace{1cm}}$$

31. Use the fundamental identities to simplify the expression:

$$7 \sec^2 x (1 - \sin^2 x) = \underline{\hspace{1cm}}$$

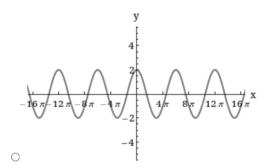
32. Find the amplitude and period of the trigonometric function: $y = 2\cos(\frac{1}{6}x)$

amplitude = _____

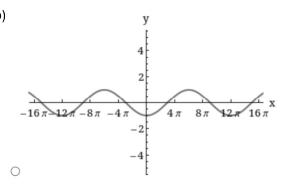
period = _____

Sketch the graph of the function.

(a)



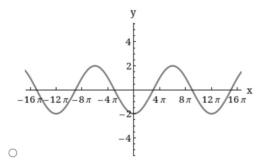
(b)



(c)



(d)



33. Find the values of the trigonometric functions of $\boldsymbol{\theta}$ from the information given.

$$\sin\theta = -\frac{12}{13}$$
, θ in Quadrant IV

$$cos(\theta) =$$

$$tan\theta =$$
_____ $cosec(\theta) =$ _____

$$cosec(\theta) =$$

$$sec(\theta) = \underline{\hspace{1cm}}$$

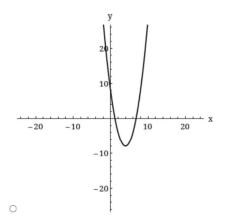
$$\cot(\theta) = \underline{\hspace{1cm}}$$

34. Find the inverse of the one-to-one function f(x) = 2x - 4.

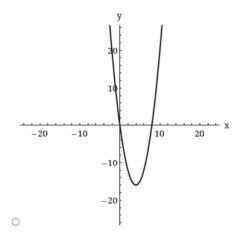
$$f^{-1}(x) =$$

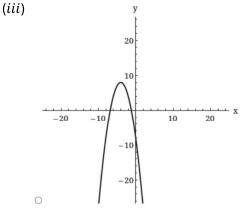
- 35. A quadratic function f is given. $f(x) = x^2 8x + 8$
 - (a) Express f in standard form. f(x) =
 - (b) Sketch a graph of f(x).

(*i*)

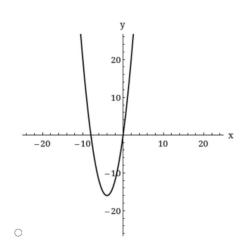


(ii)





(iv)



(c) Find the maximum or minimum value of f.

The maximum or minimum value is $f(\underline{\ \ })=\underline{\ \ \ \ }$

Is this a maximum or minimum value?

- o Maximum value
- o Minimum value