CONFIRMED: EAS Doctoral Disseration Defense by Shabnam Mohammadshahi
EAS Doctoral Dissertation Defense by Shabnam Mohammadshahi
Date: Tuesday, July 23, 2024
Time: 11:00 a.m.
Topic: Experimental Study of the Stability of Super-Hydrophobic Surface in Turbulent Flow
Location: LIB 314
Abstract:
The hydrodynamic skin friction in turbulent flows contributes to 60-70% of the total drag of most surface and subsurface vessels. Super-hydrophobic surface (SHS) is a new passive method to reduce the friction drag in turbulent flows, due to its ability to trap a thin layer of gas (or plastron) within the surface micro-structures. However, the application of SHS in real engineering systems, e.g., marine vessels, is still a challenge for the reason that the SHS may lose the gas and thereby the drag-reducing property under turbulent flows. It is unclear what is the optimal surface texture for achieving sustained drag reduction by SHS. To address this challenge, this thesis has made three contributions. First, we developed a simple method to fabricate SHSs with controlled roughness heights based on superimposing nanosized hydrophobic silica particles on top of the sandpapers. The surface roughness was controlled by using sandpapers of different grit sizes. We found that the coated sandpapers with grit sizes of 240, 400, 800, 1000, and 1500 exhibited super-hydrophobicity, while other coated sandpapers with grit sizes of 60, 120, and 600 did not show superhydrophobicity. The fabricated SHS remained in the partial Cassie-Baxter state at the highest pressure (2.4 atm), although the percentage of surface area covered by gas reduces with increasing pressure. Second, we studied the impact of surface roughness on the stability and drag reduction of SHS fabricated on sandpapers in turbulent flows. Multiple SHSs with different roughness heights were tested in a turbulent channel flow facility. We found a strong correlation between drag reduction and krms+=krms/v, where v is the viscous length scale and krms is the root-mean-square roughness height. For krms+<1, drag reduction was independent of krms+ and was nearly a constant (~47%) as increasing Reynolds number. For 1
LIB-314
Engineering and Applied Sciences
easphd@umassd.edu