David Rancour

faculty

David Rancour, PhD

Associate Professor

Electrical & Computer Engineering

Contact

508-999-8466

508-999-8489

bp_lamsp>sk_qqb,cbs

Science & Engineering 214C

Education

1988Purdue UniversityPhD in Electrical Engineering
1982Northeastern UniversityMS in Electrical Engineering
1978University of VermontBS in Electrical Engineering

Teaching

Programs

Teaching

Courses

Fundamentals of solid-state electronic devices and the application of these devices to the design of digital circuits. Among the topics covered are MOS and bipolar junction transistors, logic gates and CMOS logic design. Focus is on the design of logic circuits through solving design-oriented problems and the design, implementation, and testing of logic circuits by means of computer simulation software. The course has an integrated laboratory and, in addition, contains a component designed to increase awareness of the dynamic nature of the field.

Fundamentals of solid-state electronic devices and the application of these devices to the design of digital circuits. Among the topics covered are MOS and bipolar junction transistors, logic gates and CMOS logic design. Focus is on the design of logic circuits through solving design-oriented problems and the design, implementation, and testing of logic circuits by means of computer simulation software. The course has an integrated laboratory and, in addition, contains a component designed to increase awareness of the dynamic nature of the field.

Fundamentals of solid-state electronic devices and the application of these devices to the design of digital circuits. Among the topics covered are MOS and bipolar junction transistors, logic gates and CMOS logic design. Focus is on the design of logic circuits through solving design-oriented problems and the design, implementation, and testing of logic circuits by means of computer simulation software. The course has an integrated laboratory and, in addition, contains a component designed to increase awareness of the dynamic nature of the field.

Fundamentals of solid-state electronic devices and the application of these devices to the design of digital circuits. Among the topics covered are MOS and bipolar junction transistors, logic gates and CMOS logic design. Focus is on the design of logic circuits through solving design-oriented problems and the design, implementation, and testing of logic circuits by means of computer simulation software. The course has an integrated laboratory and, in addition, contains a component designed to increase awareness of the dynamic nature of the field.

Fundamentals of solid-state electronic devices and the application of these devices to the design of digital circuits. Among the topics covered are MOS and bipolar junction transistors, logic gates and CMOS logic design. Focus is on the design of logic circuits through solving design-oriented problems and the design, implementation, and testing of logic circuits by means of computer simulation software. The course has an integrated laboratory and, in addition, contains a component designed to increase awareness of the dynamic nature of the field.

Solid state device behavior. Among the topics covered are semiconductor fundamentals, p-n junction theory, and both the bipolar and the field effect transistor. Emphasis is placed on those transistor parameters that need to be considered in VLSI and microwave applications.

Solid state device behavior. Among the topics covered are semiconductor fundamentals, p-n junction theory, and both the bipolar and the field effect transistor. Emphasis is placed on those transistor parameters that need to be considered in VLSI and microwave applications.

Investigations of a fundamental and/or applied nature, intended to develop design techniques,research techniques, initiative, and independent inquiry. A written thesis must be completed in accordance with the rules of the Graduate School and the College of Engineering. Completion of the course requires a successful oral defense open to the public and a written thesis approved by the student's thesis committee unanimously and the ECE Graduate Program Director. Admission to the course is based on a formal thesis proposal endorsed by the student's graduate committee and submitted to the ECE Graduate Program Director.

Investigations of a fundamental and/or applied nature, intended to develop design techniques,research techniques, initiative, and independent inquiry. A written thesis must be completed in accordance with the rules of the Graduate School and the College of Engineering. Completion of the course requires a successful oral defense open to the public and a written thesis approved by the student's thesis committee unanimously and the ECE Graduate Program Director. Admission to the course is based on a formal thesis proposal endorsed by the student's graduate committee and submitted to the ECE Graduate Program Director.

Investigations of a fundamental and/or applied nature, intended to develop design techniques,research techniques, initiative, and independent inquiry. A written thesis must be completed in accordance with the rules of the Graduate School and the College of Engineering. Completion of the course requires a successful oral defense open to the public and a written thesis approved by the student's thesis committee unanimously and the ECE Graduate Program Director. Admission to the course is based on a formal thesis proposal endorsed by the student's graduate committee and submitted to the ECE Graduate Program Director.

Research

Research interests

  • Quantum Mechanics
  • Solid State Devices
  • VLSI

Dr. David P. Rancour is Associate Professor of Electrical Engineering at the University of Massachusetts Dartmouth. He has a B.S. in Electrical Engineering (Computer Engineering option) from the University of Vermont, an M.S. in Electrical Engineering (E/M fields and Digital Signal Processing) from Northeastern University, and a Ph.D. in Electrical Engineering (Solid State Devices & Materials) from Purdue University.

Dr. Rancour’s research interests have centered on defects in semiconductors. He has recently developed a theoretical model for a new defect characterization technique. Computer simulations show the new method to be more than 1000 times more sensitive than the standard technique. He has investigated defects in Gallium Arsenide epitaxial thin films, and has served as a consultant to M/A-COM, Inc., Burlington Semiconductor Operations, conducting defect characterization experiments on silicon PIN diodes.

As a United States Air Force officer, Dr. Rancour managed the engineering portions of an Air Force procurement contract for a ground based radar system. He was responsible for controls/displays and computer hardware. He also assisted in the design, fabrication, and testing of a TTL-based Optical Mark Reader for an Air Force research laboratory. Dr. Rancour has designed LCD fuel gauge display layouts for Simmonds Precision, and he has fabricated and tested a TTL-based wafer stepper interface for IBM.

Dr. Rancour is a member of the Institute of Electrical and Electronics Engineers, Electron Devices Society.