faculty
David Kagan, PhD
Associate Teaching Professor
Physics
Contact
508-910-6604
david.kagan@umassd.edu
Science & Engineering 203D
Education
2007 | University of Cambridge | PhD |
2002 | Columbia University | BA |
Teaching
Programs
Programs
Teaching
Courses
Written presentation of an original research topic in Data Science which demonstrates the knowledge & capability to conduct independent research. The thesis shall be completed under the supervision of a faculty advisor. An oral examination in defense is required.
Written presentation of an original research topic in Data Science which demonstrates the knowledge & capability to conduct independent research. The thesis shall be completed under the supervision of a faculty advisor. An oral examination in defense is required.
Calculus-based introduction to classical mechanics, emphasizing problem solving. Topics include 1- and 2-dimensional kinematics and dynamics; Newton's Laws of Motion; work, energy and momentum; and rotational motion and angular momentum. Many of these topics are further explored in laboratory experiments.
Calculus-based introduction to classical mechanics, emphasizing problem solving. Topics include 1- and 2-dimensional kinematics and dynamics; Newton's Laws of Motion; work, energy and momentum; and rotational motion and angular momentum. Many of these topics are further explored in laboratory experiments.
Calculus-based introduction to classical mechanics, emphasizing problem solving. Topics include 1- and 2-dimensional kinematics and dynamics; Newton's Laws of Motion; work, energy and momentum; and rotational motion and angular momentum. Many of these topics are further explored in laboratory experiments.
Calculus-based introduction to classical mechanics, emphasizing problem solving. Topics include 1- and 2-dimensional kinematics and dynamics; Newton's Laws of Motion; work, energy and momentum; and rotational motion and angular momentum. Many of these topics are further explored in laboratory experiments.
Calculus-based introduction to classical mechanics, emphasizing problem solving. Topics include 1- and 2-dimensional kinematics and dynamics; Newton's Laws of Motion; work, energy and momentum; and rotational motion and angular momentum. Many of these topics are further explored in laboratory experiments.
A calculus-based introduction to the concepts of electricity and magnetism. Study of electric and magnetic fields, electric potential, capacitance and inductance, elementary circuits, and electromagnetic oscillations. Laboratory experiments provide students with a solid understanding of basic DC circuit concepts and an introduction to AC circuits.
A calculus-based introduction to the concepts of electricity and magnetism. Study of electric and magnetic fields, electric potential, capacitance and inductance, elementary circuits, and electromagnetic oscillations. Laboratory experiments provide students with a solid understanding of basic DC circuit concepts and an introduction to AC circuits.
A calculus-based introduction to the concepts of electricity and magnetism. Study of electric and magnetic fields, electric potential, capacitance and inductance, elementary circuits, and electromagnetic oscillations. Laboratory experiments provide students with a solid understanding of basic DC circuit concepts and an introduction to AC circuits.
Research
Research awards
- $ 231,213 awarded by Office of Naval Research for UMassD MUST III: Quantum Computing and Control in Noisy Environments