Contact
Associate Professor / Chairperson
Sociology / Anthropology
Liberal Arts 392G
508-999-8405
kjm`tdq?tl`rrc-dct
Contact
Events
Department of Fisheries Oceanography "Diverse uses for Species Distribution Models (SDMs) in New England fisheries management" Michelle Bachman Lead Fishery Analyst, NEFMC Wednesday, November 27, 2024 3pm-4pm SMAST E 101-102 and via Zoom Abstract: Species Distribution Models (SDMs) combine presence / absence or relative abundance data from fishery-independent surveys with environmental data to predict the probability of marine fish and shellfish species occurrence through space and time. Using Community Basis Function Modeling techniques (Hui et al. 2023), offshore and inshore fish survey data, and a diverse suite of environmental predictors, we are estimating distributions for New England Council and Mid-Atlantic Council managed species and other abundant species in the Northeast U.S. Shelf Ecosystem. A solid understanding of current species distributions and the factors that influence them is essential to fisheries management decision-making in an era of climate change. We envision diverse applications for model outputs that aim to improve the responsiveness and resilience of fisheries management. The initial application for these model outputs is revising essential fish habitat designation maps. The Council's essential fish habitat designations support fisheries management decisions as well as consultations on non-fishing projects that are likely to impact fish habitats, and, by extension, fishery resources and fisheries. The three climate-resilience applications are: (1) identifying considerations for designating ecosystem component species in our fishery management plans, (2) developing revisions to governance approaches to account for current vs. historic species distributions, and (3) evaluating the results of portfolio analyses that will be used to identify opportunities and gaps in our management system, for example how fishing permits are structured. This talk will briefly describe our modeling approach and share how the results will be applied to each of these four projects. Potential future updates to these SDMs will also be noted. Join the Zoom Note: Meeting passcode required, email contact below to receive To request the Zoom passcode, or for any other questions, please email Callie Rumbut at c.rumbut@umassd.edu
See description for location
Department of Estuarine and Ocean Sciences MS Thesis Defense "A Post-Enrichment Assessment of Belowground Carbon and Organic Matter and the Potential for Increased Accumulation in a Fertilized Coastal Salt Marsh" By: Wendy Copps Co-Advisors: Miles Sundermeyer and David White Committee Member: David Schlezinger Tuesday December 3rd, 2024 11am SMAST West 204 706 S. Rodney French Blvd, New Bedford and via Zoom Abstract: Great Sippewissett Marsh in Falmouth, MA is the site of a 50-year nutrient-enrichment experiment. Experimental plots were established and fertilized with four different nutrient regimes (low, high, extra high, and no fertilization), in order to evaluate the marsh response. As a follow-up to this enrichment study, the present study was conducted to measure the amount of belowground carbon and organic matter within the experimental plots at the conclusion of the enrichment period. The goal of this study is to assess whether fertilization of the marsh facilitated increased carbon and/or organic matter accumulation in the sediments and to identify any potential relationship between the amount of fertilizer applied and the amount of carbon or organic matter stored in the sediments. The increase in the marsh surface platform is vital to maintaining the functions of the marsh as sea level rises. In a sediment-starved system such as Great Sippewissett, belowground accumulation of organic matter plays a dominant role in elevating the marsh surface platform. However, the results of this study show that higher nutrient loading does not generate more carbon or organic matter within the marsh sediments and, thus, nutrient loading is unlikely to promote elevation of the marsh surface through increased production and storage of carbon and organic matter in the sediments. Join the Zoom Note: Meeting passcode required, email contact below to receive To request the Zoom passcode, or for any other questions, please email Callie Rumbut at c.rumbut@umassd.edu
See description for location