Cultural Events with TRiO/SSS
The Academic Resource Center hosts two cultural events yearly for eligible TRiO/SSS students. Watch your UMassD email for upcoming trips, workshops, and on-campus events.
The Academic Resource Center hosts two cultural events yearly for eligible TRiO/SSS students. Watch your UMassD email for upcoming trips, workshops, and on-campus events.
Topic: Experimental Demonstration of Sound Source Bearing Estimation at a Single Receiver Using Spectral Cues Location: Lester W. Cory Conference Room Science & Engineering Building (SENG), Room 213A Abstract: Traditionally, bearing estimation of a sound source is accomplished by exploiting relative time differences of arrival across an array of sensors. For scenarios where arrays of sensors cannot be effectively utilized due to size or cost, an alternative method for source localization must be considered. Yovel et al. [Science, 2010] discovered one such method when observing that bats steer the main response axis (MRA) of their echolocation beams askew of a target. While this strategy reduces the SNR of a received echo, it paradoxically improves the Fisher information about a target's bearing angle. This trade-off suggests there are spectral cues which improve target localization despite the lost signal power. For a single sensor with far-field frequency-dependent directivity, and a known broadband waveform of finite temporal support and sufficient SNR, it is possible to locate a sound source by the angle-dependent lowpass filtering of the signal at the receiver. Furthermore, there exists an angle which minimizes the bearing angle estimate that is near to, but not coincident with the main response angle of the receiver. This thesis presents experiments demonstrating a man-made system estimating a source's bearing from signal spectral information using a single directional sensor with frequency dependence over the bandwidth of the received signal. A linear FM chirp from a source in the far field is recorded, measuring the beampattern of the receiver. Maximum likelihood estimates (MLE) of source bearing are calculated in a Monte Carlo algorithm, comparing noise-corrupted recordings to a randomized dictionary of template recordings. Mean-squared error (MSE) is computed as a function of source angle and compared to the Cramer-Rao lower bound (CRLB). Experimental results support that the MSE is not proportional to angle-dependent SNR, rather there are local variance minima away from the receiver MRA where the received signal power is attenuated. The MSE local minima are consistent with optimal angles observed in previous studies simulating the exploitation of spectral cues on target localization [Kloepper et al., JASA-EL 2018] [Tidwell & Buck, IEEE SSPD 2019]. Advisor(s): Dr. John R. Buck, Chancellor Professor, Department of Electrical & Computer Engineering, UMASS Dartmouth Committee Members: Dr. Dayalan P. Kasilingam, Professor, Department of Electrical & Computer Engineering, UMASS Dartmouth; Dr. Paul J. Gendron, Associate Professor, Department of Electrical & Computer Engineering, UMASS Dartmouth NOTE: All ECE Graduate Students are ENCOURAGED to attend. All interested parties are invited to attend. Open to the public. *For further information, please contact Dr. John R. Buck email at jbuck@umassd.edu Zoom Conference Link: https://umassd.zoom.us/j/91744864902 Meeting ID: 917 4486 4902 Passcode: 844492
Science & Engineering Building, Lester W. Cory Conference Room: Room 213A
Department of Fisheries Oceanography "Diverse uses for Species Distribution Models (SDMs) in New England fisheries management" Michelle Bachman Lead Fishery Analyst, NEFMC Wednesday, November 27, 2024 3pm-4pm SMAST E 101-102 and via Zoom Abstract: Species Distribution Models (SDMs) combine presence / absence or relative abundance data from fishery-independent surveys with environmental data to predict the probability of marine fish and shellfish species occurrence through space and time. Using Community Basis Function Modeling techniques (Hui et al. 2023), offshore and inshore fish survey data, and a diverse suite of environmental predictors, we are estimating distributions for New England Council and Mid-Atlantic Council managed species and other abundant species in the Northeast U.S. Shelf Ecosystem. A solid understanding of current species distributions and the factors that influence them is essential to fisheries management decision-making in an era of climate change. We envision diverse applications for model outputs that aim to improve the responsiveness and resilience of fisheries management. The initial application for these model outputs is revising essential fish habitat designation maps. The Council's essential fish habitat designations support fisheries management decisions as well as consultations on non-fishing projects that are likely to impact fish habitats, and, by extension, fishery resources and fisheries. The three climate-resilience applications are: (1) identifying considerations for designating ecosystem component species in our fishery management plans, (2) developing revisions to governance approaches to account for current vs. historic species distributions, and (3) evaluating the results of portfolio analyses that will be used to identify opportunities and gaps in our management system, for example how fishing permits are structured. This talk will briefly describe our modeling approach and share how the results will be applied to each of these four projects. Potential future updates to these SDMs will also be noted. Join the Zoom Note: Meeting passcode required, email contact below to receive To request the Zoom passcode, or for any other questions, please email Callie Rumbut at c.rumbut@umassd.edu
See description for location
Mechanical Engineering / Industrial & Systems Engineering (ISE) MS Project Presentation by Mr. WASEEMAKRAM MOHAMMED DATE: December 2, 2024 TIME: 2pm-4pm LOCATION: Join Zoom Meeting https://umassd.zoom.us/j/96829665890?pwd=XnPY9KQmOnsyiEqQYR1o9RP5byJsQX.1 Meeting ID: 968 2966 5890 Passcode: 977641 TOPIC: CATSED OIL SEALER BLOCK USED IN MINING EQUIPMENT WITH CAM PROFILE ABSTRACT: Casted oil sealer blocks function by creating a tight seal between moving components, preventing the leakage of lubricants. This ensures that the machinery operates efficiently by reducing friction and wear. Additionally, they help to protect internal components from contaminants like dust and debris, extending the lifespan of the equipment, which can cause costly damage to the machine. The casted oil sealer block is designed to ensure a tight seal in mining equipment, preventing oil leaks and maintaining optimal performance. Its cam profile enhances the sealing efficiency by providing a precise fit and improved durability in harsh mining conditions. Cam sealers are used to prevent dust from entering mining equipment, and over time, the frictional wear of the cam sealer can lead to a decrease in its effectiveness. It is important to monitor cam sealers for signs of frictional wear and replace them, when necessary, to maximize the effectiveness of the mining equipment. The present work focused on structural stability of cam sealer with different materials made of gravitational casting. SS316 and H13 are materials considered noncorrosive metals for many applications of mining. As we know, the lubrication can control the heat fluxes and internal temperatures of the seal body, most of the literature concentrates on the top load digging forces on the entire body. Rock digging is a different scenario, and the forces act in opposite direction. Considering these factors an increment load on the cam surface analyzed for deformed stability in profile. To avoid damage directly on base block oil injected hose the maximum load applied as 120 kg on sealer block cam profile. The materials were compared after analysis and the cost evaluation done in industrial production criteria for both the materials. ADVISOR: Dr. Wenzhen Huang, Professor, Department of Mechanical Engineering, UMass Dartmouth COMMITTEE MEMBERS: Dr. Vijaya Chalivendra, Assistant Professor, Department of Mechanical Engineering, UMass Dartmouth Dr. Md Habibor Rahman, Assistant Professor, Department of Mechanical Engineering, UMass Dartmouth Open to the public. All MNE students are encouraged to attend. For more information, please contact Dr. Wenzhen Huang (whuang@umassd.edu) or Sue Cunha (scunha@umassd.edu).
See description for location
Department of Estuarine and Ocean Sciences MS Thesis Defense "A Post-Enrichment Assessment of Belowground Carbon and Organic Matter and the Potential for Increased Accumulation in a Fertilized Coastal Salt Marsh" By: Wendy Copps Co-Advisors: Miles Sundermeyer and David White Committee Member: David Schlezinger Tuesday December 3rd, 2024 11am SMAST West 204 706 S. Rodney French Blvd, New Bedford and via Zoom Abstract: Great Sippewissett Marsh in Falmouth, MA is the site of a 50-year nutrient-enrichment experiment. Experimental plots were established and fertilized with four different nutrient regimes (low, high, extra high, and no fertilization), in order to evaluate the marsh response. As a follow-up to this enrichment study, the present study was conducted to measure the amount of belowground carbon and organic matter within the experimental plots at the conclusion of the enrichment period. The goal of this study is to assess whether fertilization of the marsh facilitated increased carbon and/or organic matter accumulation in the sediments and to identify any potential relationship between the amount of fertilizer applied and the amount of carbon or organic matter stored in the sediments. The increase in the marsh surface platform is vital to maintaining the functions of the marsh as sea level rises. In a sediment-starved system such as Great Sippewissett, belowground accumulation of organic matter plays a dominant role in elevating the marsh surface platform. However, the results of this study show that higher nutrient loading does not generate more carbon or organic matter within the marsh sediments and, thus, nutrient loading is unlikely to promote elevation of the marsh surface through increased production and storage of carbon and organic matter in the sediments. Join the Zoom Note: Meeting passcode required, email contact below to receive To request the Zoom passcode, or for any other questions, please email Callie Rumbut at c.rumbut@umassd.edu
See description for location
TIME CHANGE Mechanical Engineering MS Project Presentation by Mr. Adam Fiore DATE: December 6, 2024 TIME: 9:30am-11pm LOCATION: Science & Engineering (SENG), Room 110 (Materials Science Lab) TOPIC: Engine Bay Thermal Analysis of a Medium Class Unmanned Surface Vessel ABSTRACT: An unmanned surface vessel has the capability of operating remotely, semi-remotely, or fully autonomously (conducting missions without human intervention), while being equipped with advanced sensors and payloads for intelligence, surveillance and reconnaissance (ISR). Operating without personnel onboard demands the need to identify the possibility of system component failures that may occur due to out-of-operating range temperatures. In this project, a thermal finite element analysis (FEA) and computational fluid dynamics (CFD) shall be conducted on a medium class unmanned surface vessel, provided by the project's sponsors Huntington Ingalls Industries Uncrewed Systems Division (UxS). These studies consider both the vessel traversing the ocean at a maximum speed of 40 knots for a time duration of 10 and 4 hours and the vessel stationary at a pier during two extreme environmental conditions. These extreme environments include ambient temperatures of 115F and -20F and seawater conditions of 95F and 31F. With the vessel's internal engine bay and components being the largest source of generated heat, this shall be the interest of this project. The analysis in SOLIDWORKS models the temperature and heat transfer between components and flags minimum and maximum temperature conditions and locations. All while simulating variable environmental and system boundary conditions. A final report summarizing the results within the engine bay was provided to the project's sponsors, UxS, and included in this project. A standard operating procedure (SOP) of thermal FEA/CFD practices in SOLIDWORKS was provided to the company to apply the same methods on all system components of the MUSV. Areas of future design improvements of the MUSV are discussed briefly, Finally, future studies to better understand the effects of system components on the MUSV that contribute to high temperature changes within the engine bay are discussed. ADVISOR: Dr. Sankha Bhowmick, Professor/Chairperson, Department of Mechanical Engineering, UMass Dartmouth COMMITTEE MEMBERS: Dr. Hangjian Ling, Assistant Professor, Department of Mechanical Engineering, UMass Dartmouth Mr. James LaCroix, HII Corporate Director, Huntington Ingalls Industries (HII) Open to the public. All MNE students are encouraged to attend. For more information, please contact Dr. Sankha Bhowmick (sbhowmick@umassd.edu).
See description for location
ARC Central Office, LARTS 005A
Monday-Friday, 8am-4pm
Business Center, LARTS 010
Monday-Friday, 9am-5pm
STEM Learning Lab, SENG 217
Monday-Friday, 9am-5pm
Online tutoring available nights and weekends.
myUMassD is our web portal, a central location for email, notifications, services, and COIN: Corsairs Online Information.